Supplementary appendix

Supplement to:

Physical activity and constipation: A systematic review of cohort studies

- 1. Full search terms
- 2. Characteristics of the 13 studies on physical activity and constipation risk (Table 1)
- 3. Quality of studies according to Newcastle-Ottawa Scale (Table 2)
- 4. Figures

1. Full search strategy

#1 Exercises OR Physical Activity OR Activities, Physical OR Activity, Physical OR Physical Activities OR Exercise, Physical OR Exercises, Physical OR Physical Exercise OR Physical Exercises OR Acute Exercises OR Acute Exercises OR Exercise, Acute OR Exercises, Acute OR Exercises, Isometric OR Isometric Exercises OR Isometric Exercise OR Exercise, Aerobic OR Aerobic Exercise OR Aerobic Exercises OR Exercises, Aerobic OR Exercise Training OR Exercise Trainings OR Training, Exercise OR Trainings, Exercise #2 Constipation OR Dyschezia OR Colonic Inertia

Table S1. Characteristics of the 13 studies on physical activity and constipation risk

Table 1 Characteristics of the 13 studies on physical activity and constipation risk

					Relative Risk	Relative Risk	Relative Risk	Low PA	Moderate	High	
Authors, year	Gender	Region	Subjects	Cases	(95%CI) for	(95%CI) for	(95%CI) for	defined	PA	PA	Adjustment factors
Authors, year	Gender	Region	Subjects	Cases	high	high	moderate		defined	defined	(excluding)
					VS low PA	VS moderate PA	VS low PA	by	by	by	
Keiko Asakura et al 2017	female and male	Asia	5309	5309	0.60(0.40,0.90)	0.81(0.78,0.83)	0.74(0.49,1.15)	Low	Middle	High	residential area, physical activity level, preparation time for breakfast, and educational background of the mother
Gamze Yurtdas et al 2020	female and male	Asia	4561	4561	0.74(0.59,0.90)	0.96(0.95,0.99)	0.77(0.62,0.91)	Inactive	Moderately active	Active	age, gender, BMI, physical activity level(IPAQ), fiber intake(quartiles), water intake(quartiles)
Shigeyuki Naka ji et al 2002	male	Asia	1699	696	0.46(0.23,1.05)	None	None	≤4h/day	Nnoe	>4h/day	Nnoe
Migule A Sanjoaquin et al 2004	male	European	20630	4654	1.04(0.69,1.57)	0.97(0.86,1.08)	1.07(0.80,1.45)	None	1-3h/week	7or more h/week	age, diet group, BMI, fibre intake, fluid intake, vigorous exercise, employment status, smoking, alcohol intake and, for women only, menopausal status and current HRT use
	female	European	20630	15976	1.70(1.42,2.03)	1.48(1.37,1.60)	1.15(1.04,1.27)	None	1-3h/week	7or more h/week	age, diet group, BMI fibre intake, fluid intake, vigorous e-

											xercise, employment status,
											smoking, alcohol intake and,
											for women only, menopausal
											status and current H-RT use
											attendance of childcare and b-
Lisa M Driesse	female							Total	Total	Total	irth weight z score. Addition-
n	and male	European	347	347	0.37(0.15,0.92)	0.84(0.79,0.88)	0.44(0.19,1.04)	activity%	activity%12-	activity%	al adjustment for other covar-
et al 2013	and male							<12	17	≥17	iates did to change the effect
				'							estimates with ≥ 10%
Ling Huang	C1-	A =:=	15(0	77	0.61(0.27.0.09)	N	N	≤2 days/		≥3 days	N
et al 2017	female	Asia	1568	77	0.61(0.37,0.98)	None	None	week		/week	Nnoe
Parinaz Moezi	female		0264	752	0.56(0.46.0.69)	0.7((0.74.0.7()	0.74(0.62.0.90)	T	M 1'-	TT' 1	N
et al 2018	and male	Asia	9264	752	0.56(0.46,0.68)	0.76(0.74,0.76)	0.74(0.62,0.89)	Low	Medium	High	Nnoe
											adjusting for smoking status,
				'							alcohol consumption, number of
W 1 I D										D.A	diets in last year, body mass
Wendy J. Brow	6 1		12.000	12600	2.72/0./2.0.02	2.21(0.70.0.02)	2 22/2 22 1 22	PA	PA score 5-	PA	index, lowiron, menopausal
n	female	Oceania	13609	13609	0.72(0.63,0.83)	0.81(0.79,0.83)	0.89(0.80,1.00)	score <5	<15	score≥	status, type of contraception or
et al 2000										25	hormonereplacement therapy,
											stress level, education, and area
											of residence.
											adjusting for sex, age, percei-
Rong Huang	female	<u>.</u> .	22271	5052	2.70(2.74.0.06)	N		<1hour/		≥1hour/	ved family affluence, fruit an
et al 2014	and male	Asia	32371	5052	0.79(0.74,0.86)	None	None	day		day	d vegetable intake, and depre-
											ssion and anxiety symptoms
							1				

JAMES E Ever hart et al 1989	male	North America	14407	4411	0.32(0.14,0.77)	0.56(0.26,1.19)	None	Least	Intermediate	Most	age
	female	North America	14407	6793	0.29(0.20,0.42)	0.56(0.40,0.77)	None	Least	Intermediate	Most	age
Patrick B. Wils on 2020	female and male	North America	9963	771	0.87(0.68,1.12)	0.98(0.74,1.30)	None	Low	Moderate	High	age, gender, education,race/et- hnicity, relationship status, pe- rceived health status, BMI, d- ietary fiber, dietary moisture
Bodil Ohlsson et al 2016	female and male	European	16840	516	0.298(0.153,0.5	0.552(0.441,0.68 9)	0.540(0.347,0. 842)	Mostly sitting	Activity 30- 60min/day	Strenuous activity 60 min/ day	basal characteristics
Mari A. Kuutti et al 2023	female	European	1098	189	1.00(0.95,1.04)	0.97(0.68,1.38)	1.03(0.69,1.54)	No exercise	Regular PA	Current P A (MET-h/d)	None

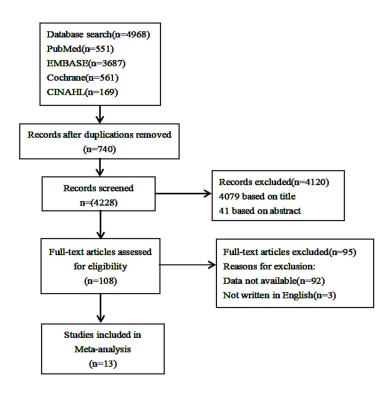
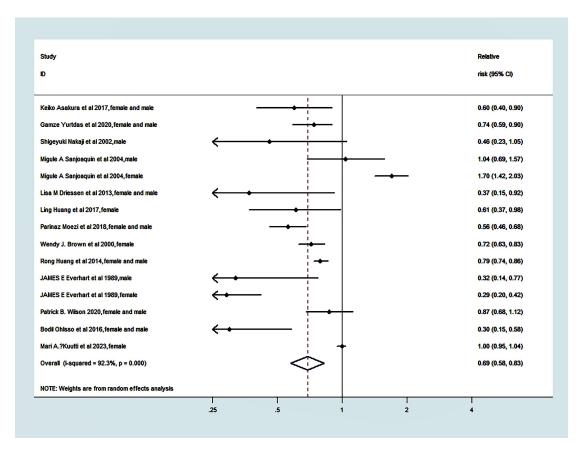
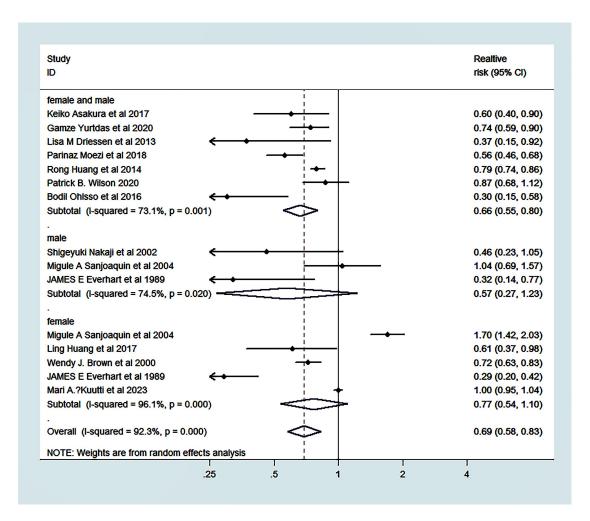
CI - confidence interval % - percent

 Table S2. Quality of studies according to Newcastle-Ottawa Scale

Table 2 Quality of studies according to Newcastle-Ottawa Scale

First author,	Selection	Comparability	Exposure (case-control) or outcome		
Year, country	(Max, score 4)	(Max, score 2)	(cohort) (max, score 3)		
Keiko Asakura et al 2017	3	1	2		
Gamze Yurtdas et al 2020	3	2	2		
Shigeyuki Nakaji et al 2002	2	1	2		
Migule A Sanjoaquin et al 2004	3	2	2		
Lisa M Driessen et al 2013	2	1	2		
Ling Huang et al 2017	4	1	1		
Parinaz Moezi et al 2018	3	1	1		
Wendy J. Brown et al 2000	2	2	2		
Rong Huang et al 2014	4	1	2		
JAMES E Everhart et al 1989	2	1	2		
Patrick B. Wilson 2020	3	2	2		
Bodil Ohlsson 2016	4	2	3		
Mari A. Kuutti et al 2023	4	1	2		

4. Figures

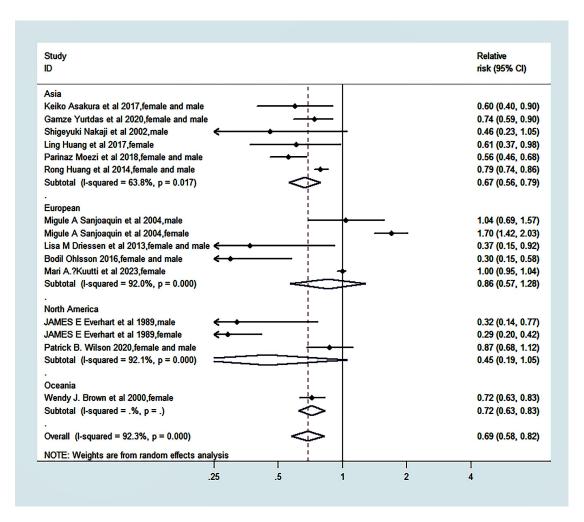

Figure S1. PRISMA fow diagram of identification and selection of eligible studies

Figure S2. Forest plot of a random efects meta-analysis including 15 risk estimates of constipation for a high versus low level of PA

Figure S3. Forest plot of a random efects meta-analysis including 15 risk estimates of constipation for a high versus low level of PA, grouped by gender

Figure S4. Forest plot of a random efects meta-analysis including 15 risk estimates of constipation for a

high versus low level of PA, grouped by region

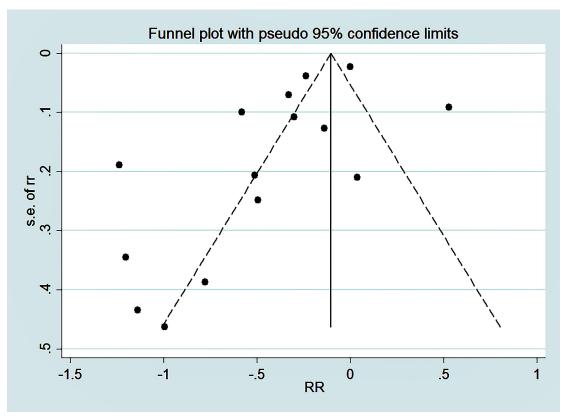


Figure S5. Standardized Funnel plot corresponding to the main random-efects meta-analysis

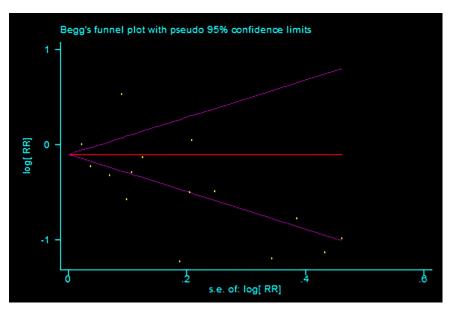
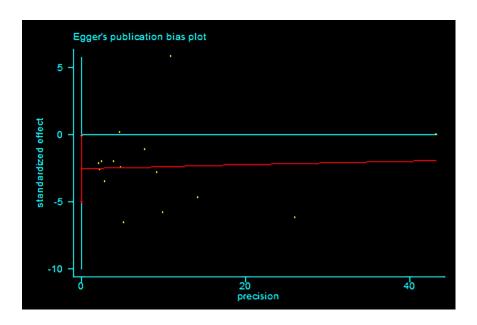
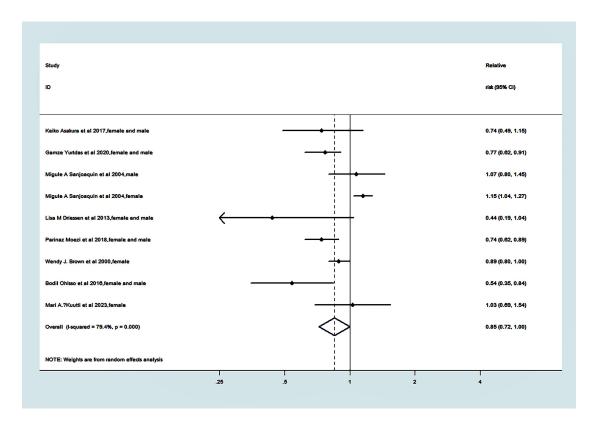
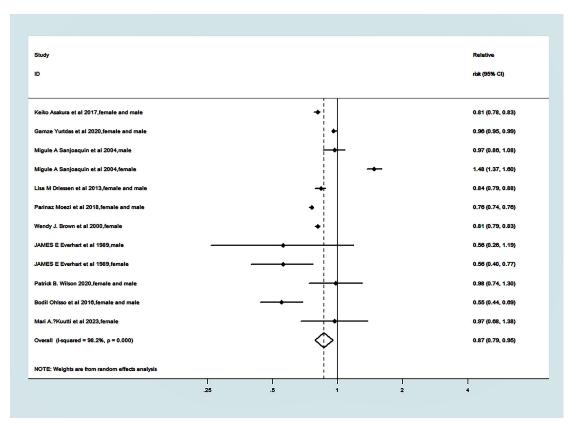


Figure S6. Standardized Begg's rank correlation test corresponding to the main random-efects meta-analysis

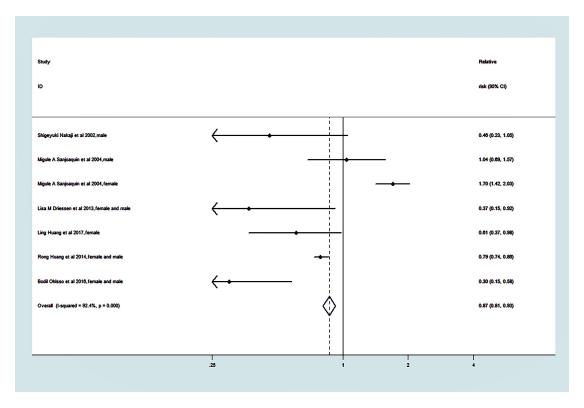

Figure S7. Standardised Egger's regression test corresponding to the main random-efects meta-analysis

Figure S8. Forest plot of a random efects meta-analysis including 9 risk estimates of constipation for a moderate versus low level of PA

Figure S9. Forest plot of a random efects meta-analysis including 12 risk estimates of constipation for a high versus moderate level of PA

Figure S10. Forest plot of a random efects meta-analysis including 7 risk estimates of constipation for PA guidelines