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It is widely acknowledged that a comprehensive understanding of the risk factors associated with the disease 
is vital for both the general public and medical researchers [1,2]. For the population at large, understanding 
disease risk factors can enable informed decisions about lifestyle choices and preventative measures, thus 

contributing to overall health and well-being [3,4]. With knowledge of the disease risk factors, individuals can 
consciously strive to mitigate their risk, adopt healthier behaviours, and reduce the incidence of preventable 
diseases. For medical researchers, studying disease risk factors forms the basis of epidemiological investigations 
[5] that elucidates the complex aetiology of diseases, aiding in identifying causative and contributing factors; 
consequently, this guides the development of targeted therapeutic approaches, provides clinical guidelines, and 
drives innovative research on disease prevention and treatment [6]. Moreover, a comprehensive understand-
ing of disease risk factors enables the conception of population-specific intervention strategies that contribute 
to health equity and the broader goal of global health improvement [7].

However, as one of the most popular topics, the literature on disease-related risk fac-
tors has increased sharply over the last 20 years from 332 182 (2002) to 1 748 504 
(2022). Given that over 120 000 studies were published in a single year, it is impos-
sible to finish reading them all, which exerts an information overload on research-
ers. These requirements encouraged us to apply a natural language processing (NLP) 
algorithm to extract risk factor information from numerous studies.

The advent of large language models (LLM) such as ChatGPT heralds a new 
era of automation and cognitive assistance, reshaping engagement with 
information and decision-making processes [8]. The ChatGPT model has 
gained recognition for its ability to extract information, demonstrate an 
in-depth understanding of context, and provide valuable insights across 
various subjects [9]. This study aimed to develop and evaluate four risk 
factor extraction models based on ChatGPT.
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In this study a risk factor-related literature database in-
cluding 1 748 504 papers was developed based on the 
literature downloaded from PubMed FTP (https://ftp.
ncbi.nlm.nih.gov/pubmed/). For each test in the four 
models, we randomly selected 100 literature abstracts 
from the database and input them into ChatGPT to ex-
tract risk factor information according to the stipula-
tions of various models.

Model 1 employed ChatGPT to extract risk factor in-
formation from the entire abstract, whereas Model 2 
harnessed ChatGPT to extract risk factor details from 
the results section of the abstract. Model 3 filtered 
the input literature and extracted risk factors exclu-
sively from the abstracts of clinical studies. Model 4 
restricted itself to extracting risk factor information 
exclusively from the results section within clinical re-
search abstracts.

Each model was tested independently in three itera-
tions, and the results were verified by two experts. The 
performance of the models was gauged on a scale of 
0 to 1, with 1 representing complete accuracy and 0 
representing total inaccuracy (Figure 1). There were 
no significant differences between the different evalu-
ation criteria in these four models (P > 0.05), implying 
that the assessment outcomes were consistent and ac-
curate. However, significant differences were observed 
in the accuracy scores between the models. Model 1, 
which used the entire abstract for risk factor informa-
tion extraction, only yielded an average accuracy of 

54.4 ± 4.6. The average accuracy for model 2 increased to 65.3 ± 8.9 when the results section of abstracts was 
analysed. Upon further criteria restriction to clinical research abstracts, the average accuracy values for models 
3 and 4 significantly increased, with accuracy values of 82.1 ± 7.8 and 92.6 ± 2.1, respectively.

We used stringent criteria for each literature review. Our data showed that ChatGPT has the potential to ex-
tract a plethora of data on disease risk factors from article abstracts.

In this study, Model 1 achieved an average accuracy score of only 54 ± 4.6. Upon further examination by the re-
searchers assigned to review each article, the low score was attributed to contextual inferences in data that con-
tained no evidence-based support. Therefore, we restricted the input information to the results section of the 
abstract of each article, which yielded significantly better accuracy in Model 2 (P < 0.01). Additionally, most of 

the inaccuracies observed in Model 2 were attributed to 
basic experimental articles; because many basic studies 
do not contain risk factor information, ChatGPT either 
extrapolates or fabricates risk factors from some of the 
abstracts. Further restrictions placed in Models 3 and 4 
resulted in a significant increase in accuracy (P < 0.01), 
with Model 4 showing an accuracy of approximately 93.

Therefore, our study shows that ChatGPT can po-
tentially be used to develop a RISK-GPT database for 
diseases. However, human validation is necessary to 
ensure accuracy [10]. Furthermore, even though arti-
ficial intelligence can assist humans in these matters, 
humans are responsible for its development and im-
plementation [11].

This study had some limitations. First, the number 
of literature samples tested was small and should be 
drastically increased in future studies. Second, these 

Photo: Artificial intelligence, brain, thinking picture. Source: Pixabay, free to use (https://
pixabay.com/zh/illustrations/artificial-intelligence-brain-think-3382507/).

Figure 1. The accuracy score of four different models. The green bar repre-
sents the accuracy score from the first evaluator, while the orange bar is the 
score of the second evaluator. ns, represents no significant difference. ***, 
represents significant change (P < 0.01). In Model 1, 100 abstracts were ran-
domly selected. In Model 2, the results section of 100 abstracts were anal-
ysed. In Model 3, 100 abstracts from clinical studies were selected. In Model 
4, the results section of 100 clinical studies abstracts were analysed. These 
models were tested independently three times each.
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ChatGPT models were not specifically designed to extract information from the medical literature. Furthermore, 
the results of the included studies were inconsistent within each model. There remains ample room for im-
provement to resolve these issues and better optimize ChatGPT to produce and develop a RISK-GPT database.

In conclusion, our study demonstrates that ChatGPT has the potential to extract disease risk factor data from 
article abstracts. However, limitations such as low accuracy in Model 1 and inconsistencies in the results indi-
cate the need for further optimization and human validation to develop a reliable RISK-GPT database for dis-
eases, emphasizing the responsibility of humans in its development and implementation.
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