## Supplementary information of How enlightened self-interest guided global vaccine sharing benefits all: a modeling study

Zhenyu Han, Lin Chen, Qianyue Hao, Qiwei He, Katherine Budeski, Depeng Jin, Fengli Xu, Kun Tang and Yong Li

Kun Tang and Yong Li are the corresponding author. E-mail: tangkmail.tsinghua.edu.cn, liyong07tsinghua.edu.cn

#### **Supplementary Datasets**

In this work, we use six datasets for model fitting and vaccine distribution strategies modeling: COVID-19 confirmed cases data, COVID-19 vaccine administration estimates, COVID-19 vaccine production estimates, global flight records and population distribution data.

A) **COVID-19 confirmed cases data:** To depict the epidemic transmission in each region, we adopt the COVID-19 confirmed cases time-series data released by Johns Hopkins University<sup>1</sup>. The data is available at https://github.com/ CSSEGISandData/COVID-19. We aggregate the country (entity) level cumulative infections into regions according to the taxonomy of World Bank<sup>2</sup>.

**B) COVID-19 seroprevalence data:** The above case records contain the official case statistics from the governments, where non-negligible errors due to the limited testing capacity and wrong statistic models in the early stage of the outbreak have been identified<sup>3,4</sup>. To minimize these errors, we adopt seroprevalence studies to calibrate the case data. According to the largest review of COVID seroprevalence research<sup>5</sup> that contains 968 studies with more than 9.3 million participants, we preclude highly unreliable ones estimated and use the corrected median seroprevalence provided by the authors to reduce the potential bias.

**C) COVID-19 vaccine administration estimates:** We use COVID-19 vaccine doses administered estimates released by Our World in Data<sup>6</sup>. It contains the detailed number of cumulative vaccine does administered in each country (entity) by day. It provides a real-world basis for calibrating our model to capture the disease transmission patterns that support the exploration of more equitable vaccine sharing strategies. This data is widely acknowledged, and has been used in a series of high-quality studies<sup>7,8</sup>. It is available at https://ourworldindata.org/grapher/cumulative-covid-vaccinations.

**D) COVID-19 vaccine production estimates:** We use the COVID-19 vaccine producing capacity estimates released by Statista<sup>9</sup>. It contains the total number of COVID-19 vaccine doses produced by each country (entity) till 2021-03-03. We only care about the vaccine production shares to trace back the origins of the administrated vaccines. Therefore, the error in the specific number of production estimates is acceptable. It is available at https://www.statista.com/chart/24492/total-covid-19-vaccine-production-by-country/.

**E) Global flight data:** We purchased the global flight records from the Official Aviation Guide (OAG). It has the full volume seat order data collected from the International Air Transport Association (IATA), the official organization that regulates the global airline industry. This data has also been widely acknowledged and adopted in impactful studies by various researchers<sup>10–14</sup>. We obtain all the international flight orders in country (entity) level from January 2019 to July 2021. During data processing, we aggregate the flight orders into World Bank regions.

**F) Population distribution data:** We use World Bank statistics about global population in our model, which is available at https://data.worldbank.org/indicator/SP.POP.TOTL.

#### **Supplementary Text**

#### Text S1. Estimation of vaccine producing capacity by time

We estimate the daily COVID-19 vaccine produced capacity of each vaccine-producing region out of the COVID-19 vaccine doses administered data by Our World in Data<sup>6</sup> and the COVID-19 vaccine production data by Statista<sup>9</sup>, which are shown in Fig. SS6. We assume that the total number of vaccines produced by the vaccine-producing regions daily is identical to those administered by all regions around the world in the COVID-19 vaccine doses administered data. The cumulative total number of produced (administered) vaccines is shown in Fig. SS6A. We obtain the vaccine production shares of various countries till

2021-03-03, which is shown in Fig. SS6B. We consider countries producing more than 10 million doses of vaccines to be vaccine-producing-able ones and the aggregated vaccine production shares into regions are shown in Fig. SS6C. We assume that the shares keep unvaried and the vaccine producing capacity by time can be estimated by multiplying the shares and the cumulative total number of produced vaccines.

#### Text S2. Epidemiological model design

10

Inpu

As demonstrated in Methods, we propose a novel epidemiological model that considers the breakthrough infection and global mobility. For each region, we have the following equations:

$$\frac{\mathrm{d}S_n}{\mathrm{d}t} = -vcc(n,t) - \beta_n S_n (I_{s,n} + I_{v,n}),\tag{1}$$

$$\frac{\mathrm{d}V_n}{\mathrm{d}t} = vcc(n,t) - \beta_n(1-\kappa)V_n(I_{s,n}+I_{\nu,n}),\tag{2}$$

$$\frac{\mathrm{d}I_{s,n}}{\mathrm{d}t} = \beta_n S_n (I_{s,n} + I_{v,n}) - \gamma_n I_{s,n} - \psi I_{s,n},\tag{3}$$

$$\frac{\mathrm{d}I_{\nu,n}}{\mathrm{d}t} = \beta_n (1-\kappa) V_n (I_{s,n} + I_{\nu,n}) - \gamma_n I_{\nu,n} - \psi (1-\sigma) I_{\nu,n},\tag{4}$$

$$\frac{\mathrm{d}R_{s,n}}{\mathrm{d}t} = \gamma_n I_{s,n},\tag{5}$$

$$\frac{\mathrm{d}R_{\nu,n}}{\mathrm{d}t} = \gamma_n I_{\nu,n},\tag{6}$$

$$\frac{\mathrm{d}D_{s,n}}{\mathrm{d}t} = \psi I_{s,n},\tag{7}$$

$$\frac{\mathrm{d} v_{v,n}}{\mathrm{d} t} = \psi(1-\sigma)I_{v,n},\tag{8}$$

where  $S_n, V_n, I_{\star,n}, R_{\star,n}, D_{\star,n}$  are the susceptible, vaccinated, infected, recovered and deceased people in region *n*. Specifically, we divide the infected, recovered and deceased people according to their vaccination status into  $I_{s,n}, R_{s,n}, D_{s,n}$  and  $I_{v,n}, R_{v,n}, D_{v,n}$  for unvaccinated and vaccinated people accordingly. It enables us to explicitly model the breakthrough infection process.

Equation (1) demonstrates the change in susceptible people due to the vaccination process (the first term on the right side) and infection process (the second term on the right side). vcc(n,t) is the number of people who can be vaccinated in region n at time t derived by various vaccine sharing strategies. For the infection process, both  $I_{s,n}$  and  $I_{v,n}$  can lead to new infections with infection rate  $\beta_n$ . We follow the implicit assumption in the classic SIR model that people in the same region are homogeneously mixed, which generates the term  $-\beta_n S_n(I_{s,n} + I_{v,n})$ . The infected people from state  $S_n$  will transit to state  $I_{s,n}$ , as shown in Equation (3).  $I_{s,n}$  will recover according to the recovery rate  $\gamma_n$  or die according to the death rate  $\psi_n$ , as the second and the third term in Equation (3) right side shows. The recovered people and dead people from  $I_{s,n}$  turn to  $R_{s,n}$  and  $D_{s,n}$  accordingly in Equation (5) and (7). For vaccinated people, we have a similar process but with extra vaccine effectiveness parameters towards infection and death, which is denoted as  $\kappa$  and  $\sigma$  accordingly. The state transfer processes for vaccinated people are shown in Equation (4), (6) and (8). Details about model parameters can be found in Supplementary Table 4.

Based on the above setting, we formally introduce the global mobility network as the following equations:

$$InputFlow_{S_n}(t) = \sum_{m,m \neq n} mobility_{m,n}(t) \times \frac{S_m}{N_m}, \quad OutputFlow_{S_n}(t) = \sum_{m,m \neq n} mobility_{n,m}(t) \times \frac{S_n}{N_n};$$
(9)

$$\text{tFlow}_{V_n}(t) = \sum_{m,m \neq n} mobility_{m,n}(t) \times \frac{V_m}{N_m}, \quad \text{OutputFlow}_{V_n}(t) = \sum_{m,m \neq n} mobility_{n,m}(t) \times \frac{V_n}{N_n}; \tag{10}$$

$$\text{InputFlow}_{I_{s,n}}(t) = \sum_{m,m \neq n} mobility_{m,n}(t) \times \frac{I_{s,m}}{N_m}, \quad \text{OutputFlow}_{I_{s,n}}(t) = \sum_{m,m \neq n} mobility_{n,m}(t) \times \frac{I_{s,n}}{N_n};$$
(11)

InputFlow<sub>*I<sub>v,n</sub>*(*t*) = 
$$\sum_{m,m\neq n} mobility_{m,n}(t) \times \frac{I_{v,m}}{N_m}$$
, OutputFlow<sub>*I<sub>v,n</sub>*(*t*) =  $\sum_{m,m\neq n} mobility_{n,m}(t) \times \frac{I_{v,n}}{N_n}$ ; (12)</sub></sub>

$$\text{InputFlow}_{R_{s,n}}(t) = \sum_{m,m \neq n} mobility_{m,n}(t) \times \frac{R_{s,m}}{N_m}, \quad \text{OutputFlow}_{R_{s,n}}(t) = \sum_{m,m \neq n} mobility_{n,m}(t) \times \frac{R_{s,n}}{N_n};$$
(13)

$$\text{InputFlow}_{R_{v,n}}(t) = \sum_{m,m \neq n} \textit{mobility}_{m,n}(t) \times \frac{R_{v,m}}{N_m}, \quad \text{OutputFlow}_{R_{v,n}}(t) = \sum_{m,m \neq n} \textit{mobility}_{n,m}(t) \times \frac{R_{v,n}}{N_n}; \tag{14}$$

where the InputFlow $_{\{\star_n\}(t)}$  and OutputFlow $_{\{\star_n\}(t)}$  represent the number of people in state  $\star$  that move in/out from region n. The summation in equation is over each region. The *mobility*<sub>m,n</sub>(t) depicts the total population flow from region m to region n at time t, which is set according to the calibrated global mobility data.  $N_m$  depicts the total population in region m, which equals to  $S_m + V_m + I_{s,m} + I_{v,m} + R_{s,m} + R_{v,m}$ . By the above equations, we assume the population in each region is fully mixed, so the international travelers obey the distribution in their source region.

To combine the metapopulation epidemiological model with the global mobility network, we update each state of each region as follows:

$$S_n = S_n + \text{InputFlow}_{S_n}(t) - \text{OutputFlow}_{S_n}(t) = S_n + \sum_{m,m \neq n} \text{mobility}_{m,n}(t) \times \frac{S_m}{N_m} - \sum_{m,m \neq n} \text{mobility}_{n,m}(t) \times \frac{S_n}{N_n}, \quad (15)$$

$$V_n = V_n + \text{InputFlow}_{V_n}(t) - \text{OutputFlow}_{V_n}(t) = V_n + \sum_{m,m \neq n} mobility_{m,n}(t) \times \frac{V_m}{N_m} - \sum_{m,m \neq n} mobility_{n,m}(t) \times \frac{V_n}{N_n},$$
(16)

$$I_{s,n} = I_{s,n} + \text{InputFlow}_{I_{s,n}}(t) - \text{OutputFlow}_{I_{s,n}}(t) = I_{s,n} + \sum_{m,m \neq n} mobility_{m,n}(t) \times \frac{I_{s,m}}{N_m} - \sum_{m,m \neq n} mobility_{n,m}(t) \times \frac{I_{s,n}}{N_n}, \quad (17)$$

$$I_{\nu,n} = I_{\nu,n} + \text{InputFlow}_{I_{\nu,n}}(t) - \text{OutputFlow}_{I_{\nu,n}}(t) = I_{\nu,n} + \sum_{m,m \neq n} mobility_{m,n}(t) \times \frac{I_{\nu,m}}{N_m} - \sum_{m,m \neq n} mobility_{n,m}(t) \times \frac{I_{\nu,n}}{N_n}, \quad (18)$$

$$R_{s,n} = R_{s,n} + \text{InputFlow}_{R_{s,n}}(t) - \text{OutputFlow}_{R_{s,n}}(t) = R_{s,n} + \sum_{m,m \neq n} mobility_{m,n}(t) \times \frac{R_{s,m}}{N_m} - \sum_{m,m \neq n} mobility_{n,m}(t) \times \frac{R_{s,n}}{N_n},$$
(19)

$$R_{\nu,n} = R_{\nu,n} + \text{InputFlow}_{R_{\nu,n}}(t) - \text{OutputFlow}_{R_{\nu,n}}(t) = R_{\nu,n} + \sum_{m,m \neq n} mobility_{m,n}(t) \times \frac{R_{\nu,m}}{N_m} - \sum_{m,m \neq n} mobility_{n,m}(t) \times \frac{R_{\nu,n}}{N_n}.$$
(20)

Note that the number of deceased people  $D_{s,n}$ ,  $D_{v,n}$  will not be updated by the global mobility network.

During the model calibration, we use Bayesian Optimization (BO) with 40 random initializations to capture the underlying uncertainties that lie in the estimation of epidemiological parameters of the continuous mutation of SARS-CoV-2 virus. The metapopulation framework fits different sets of parameters for each region, accounting for the spatial heterogeneity of epidemiological parameters. Besides, we also divide the simulation period into three phases according to the mutation timeline, accounting for the temporal heterogeneity.

Leveraging the global flight data, we can reconstruct the global mobility pattern that contains other transportation methods, such as railway transport and maritime transport. According to two different industrial surveys from Statista and Aviation Benefits Beyond Borders, we assume our air travel data occupies 59% of global international travels. In that case, we reconstruct the global mobility pattern by multiplying 1/0.59 for our model.

#### Text S3. Disentangling local transmission and imported transmission

We demonstrate the calculation process of the local transmission and imported transmission in Supplementary Fig 5. Assuming at the beginning of step t, we have a clear definition of the local transmission and imported transmission as the pre-existing infection cases locally and input cases through the global mobility network. Then for the new infections that happened at step t, we divide them by the proportion of local transmission and imported transmission, and add them back to the local transmission and imported transmission from the last step, and new input cases from the global mobility network. We assume these two parts together are responsible for the imported transmission, while the others belong to local transmission. By tracing back the full transmission process, we can get the local transmission and imported transmission and determine the corresponding vaccine effectiveness towards them.

#### Text S4. Calibration of reported cases

Non-negligible errors due to the limited testing capacity and wrong statistic models have been identified<sup>3,4</sup>, especially in regions with poor medical and health conditions. To minimize these errors, we leverage seroprevalence studies to calibrate the number of reported cases in Johns Hopkins University COVID-19 confirmed cases data.

We refer to the most comprehensive systematic review that screened 968 studies with more than 9.3 million participants in 74 countries<sup>5</sup>, which is the largest synthesis of SARS-CoV-2 seroprevalence data. One of the major contributions of this review is the accurate assessment of the reliability of seroprevalence studies: leveraging Bayesian measurement error models, the authors corrected the seroprevalence estimates and labeled the reliability of each study. It successfully identified a large percentage of studies with insufficient reliability (496, 51% of all the studies). In our work, we preclude these unreliable studies

and adopt the corrected median seroprevalence provided by the authors, which had been cross-validated by Global Burden of Disease data maintained by the Institute for Health Metrics and Evaluation (IHME). We believe this estimation can minimize the potential bias and ensure the reliability of our following analyses. We calculate the calibration factors in each region by the reported infection rates and the median seroprevalence, which are further multiplied by the daily reported number. The detailed data are shown in Tab. SS5.

#### Text S5. Calculation of vaccine marginal utility

To investigate the effectiveness of vaccines in different regions, we calculate the marginal utility of vaccines by assigning additional 100 million vaccines in each region, and quantify the averted cases per vaccine 28 days later. We assign these additional vaccines to each region individually on 2021-10-17, and evaluate the difference between cumulative cases with and without these additional vaccines as an agent for the vaccine marginal utility. Besides, we also calculate the Spearman correlation between the vaccination rate on 2021-10-17 with the marginal utility in each region, finding that a strong negative correlation exists.

#### **Supplementary Figures**



# **Supplementary Figure S1.** Effectiveness of *altruistic* vaccine sharing strategies compared with *selfish* strategy. Under *altruistic* sharing strategy, vaccine-producing regions will start to share specific percentage of vaccines from the early beginning, without considering their own benefit. Although the global infections can be greatly suppressed, the *altruistic* strategies are not practical since they disobeys the interest of vaccine-producing regions.



**Supplementary Figure S2.** Detailed possibilities of *enlightened self-interest*, statistics of cumulative cases change and cumulative deaths change of the four vaccine-producing regions. (A) The detailed possibility for each vaccine-producing region to have benefit with various vaccine sharing strategies over the repeated experiments where the color indicates the possibilities. (B) The detailed cumulative cases and deaths change comparing the *selfish* strategy in each vaccine-producing region.



**Supplementary Figure S3.** Global population flow in region level. We demonstrate the cumulative population flow between regions during our simulation, which starts from 2020-03-01 to 2021-11-14. We assume the human mobility maintains the same level with 2019. From the figure we can observe highly heterogeneity in global mobility patterns, where the mobility is more concentrated in developed regions. While the population inflow and outflow are basically maintain an equilibrium.



**Supplementary Figure S4.** Global population flow of infected people under no-vaccine scenario. If there are no vaccines, the flow of infected people demonstrates great heterogeneity: Middle East & North Africa will become the most important origin region, while Europe & Central Asia and North America will face great challenge from input infections.



**Supplementary Figure S5. Illustration of the definition about local transmission and imported transmission.** The transmission can be divided into two types: the local transmission and the imported transmission. We trace back the new infections at each step according to the proportion of local infection and imported infection, where new infections caused by earlier local infections are defined as local transmission, and new infections caused by earlier and current input cases are defined as imported transmission.



**Supplementary Figure S6.** Details in estimation of vaccine producing capacity. (A) The cumulative number of produced (administered) vaccines. (B) The shares of vaccine production in different countries until 2021-03-03. (C) The aggregated vaccine production shares into regions.

### Supplementary Tables

| Country (Entity)         | Region                     | Population <sup>1</sup> | Infections <sup>2</sup> | Vaccinations <sup>3</sup> |
|--------------------------|----------------------------|-------------------------|-------------------------|---------------------------|
| Afghanistan              | South Asia                 | 38928341                | 147154                  | 5852810                   |
| Albania                  | Europe & Central Asia      | 2837743                 | 133081                  | 2000104                   |
| Algeria                  | Middle East & North Africa | 43851043                | 171392                  | 11316114                  |
| Andorra                  | Europe & Central Asia      | 77265                   | 14678                   | 104534                    |
| Angola                   | Sub-Saharan Africa         | 32866268                | 42777                   | 7246966                   |
| Antigua and Barbuda      | Latin America & Caribbean  | 97928                   | 1303                    | 111186                    |
| Argentina                | Latin America & Caribbean  | 45376763                | 4929764                 | 63017438                  |
| Armenia                  | Europe & Central Asia      | 2963234                 | 230110                  | 831856                    |
| Australia                | East Asia & Pacific        | 25687041                | 34383                   | 37695740                  |
| Austria                  | Europe & Central Asia      | 8917205                 | 659056                  | 12251544                  |
| Azerbaijan               | Europe & Central Asia      | 10110116                | 343849                  | 10092422                  |
| Bahamas                  | Latin America & Caribbean  | 393248                  | 14840                   | 263794                    |
| Bahrain                  | Middle East & North Africa | 1701583                 | 269186                  | 2827532                   |
| Bangladesh               | South Asia                 | 164689383               | 1249484                 | 84319490                  |
| Barbados                 | Latin America & Caribbean  | 287371                  | 4390                    | 283918                    |
| Belarus                  | Europe & Central Asia      | 9398861                 | 446040                  | 5409634                   |
| Belgium                  | Europe & Central Asia      | 11555997                | 1124715                 | 16960398                  |
| Belize                   | Latin America & Caribbean  | 397621                  | 14163                   | 391846                    |
| Benin                    | Sub-Saharan Africa         | 12123198                | 8394                    | 347270                    |
| Bhutan                   | South Asia                 | 771612                  | 2515                    | 1148146                   |
| Bolivia                  | Latin America & Caribbean  | 11673029                | 473506                  | 8041446                   |
| Bosnia and Herzegovina   | Europe & Central Asia      | 3280815                 | 205655                  | 1553874                   |
| Botswana                 | Sub-Saharan Africa         | 2351625                 | 106690                  | 1128094                   |
| Brazil                   | Latin America & Caribbean  | 212559409               | 19917855                | 296865258                 |
| Brunei Darussalam        | East Asia & Pacific        | 437483                  | 337                     | 680756                    |
| Bulgaria                 | Europe & Central Asia      | 6927288                 | 425054                  | 3070018                   |
| Burkina Faso             | Sub-Saharan Africa         | 20903278                | 13573                   | 661796                    |
| Burundi                  | Sub-Saharan Africa         | 11890781                | 7080                    | 1084                      |
| Cabo Verde               | Sub-Saharan Africa         | 555988                  | 33791                   | 526890                    |
| Cambodia                 | East Asia & Pacific        | 16718971                | 77243                   | 28231176                  |
| Cameroon                 | Sub-Saharan Africa         | 26545864                | 82064                   | 510324                    |
| Canada                   | North America              | 38005238                | 1438457                 | 59539750                  |
| Central African Republic | Sub-Saharan Africa         | 4829764                 | 7151                    | 422372                    |
| Chad                     | Sub-Saharan Africa         | 16425859                | 4973                    | 234030                    |
| Chile                    | Latin America & Caribbean  | 19116209                | 1615771                 | 39036594                  |
| China                    | East Asia & Pacific        | 1402112000              | 105050                  | 2389568000                |
| Colombia                 | Latin America & Caribbean  | 50882884                | 4785320                 | 50914404                  |
| Comoros                  | Sub-Saharan Africa         | 869595                  | 4028                    | 452612                    |

Supplementary Table S1. Detailed information of the 183 studied countries (entities).

| Country (Entity)            | Region                     | Population | Infections | Vaccinations |
|-----------------------------|----------------------------|------------|------------|--------------|
| Congo                       | Sub-Saharan Africa         | 5518092    | 13186      | 549254       |
| Congo (Democratic Republic) | Sub-Saharan Africa         | 89561404   | 49917      | 153616       |
| Costa Rica                  | Latin America & Caribbean  | 5094114    | 406814     | 6736978      |
| Cote d'Ivoire               | Sub-Saharan Africa         | 26378275   | 50135      | 3541784      |
| Croatia                     | Europe & Central Asia      | 4047200    | 363615     | 3845712      |
| Cuba                        | Latin America & Caribbean  | 11326616   | 384596     | 27039584     |
| Cyprus                      | Europe & Central Asia      | 1207361    | 101419     | 1237026      |
| Czech Republic              | Europe & Central Asia      | 10698896   | 1673576    | 12781462     |
| Denmark                     | Europe & Central Asia      | 5831404    | 317790     | 8888556      |
| Djibouti                    | Middle East & North Africa | 988002     | 11651      | 92096        |
| Dominica                    | Latin America & Caribbean  | 71991      | 210        | 53954        |
| Dominican Republic          | Latin America & Caribbean  | 10847904   | 341905     | 13565998     |
| Ecuador                     | Latin America & Caribbean  | 17643060   | 487372     | 22692858     |
| Egypt                       | Middle East & North Africa | 102334403  | 284262     | 30563570     |
| El Salvador                 | Latin America & Caribbean  | 6486201    | 86620      | 8888704      |
| Equatorial Guinea           | Sub-Saharan Africa         | 1402985    | 8880       | 438464       |
| Estonia                     | Europe & Central Asia      | 1331057    | 133557     | 1459580      |
| Eswatini                    | Sub-Saharan Africa         | 1160164    | 25979      | 286670       |
| Ethiopia                    | Sub-Saharan Africa         | 114963583  | 280365     | 5066268      |
| Fiji                        | East Asia & Pacific        | 896444     | 29781      | 1196888      |
| Finland                     | Europe & Central Asia      | 5530719    | 106802     | 8223746      |
| France                      | Europe & Central Asia      | 67391582   | 6190487    | 100781942    |
| Gabon                       | Sub-Saharan Africa         | 2225728    | 25384      | 248310       |
| Gambia                      | Sub-Saharan Africa         | 2416664    | 7709       | 267262       |
| Georgia                     | Europe & Central Asia      | 3714000    | 419534     | 2046362      |
| Germany                     | Europe & Central Asia      | 83240525   | 3776724    | 114930114    |
| Ghana                       | Sub-Saharan Africa         | 31072945   | 103019     | 3188114      |
| Greece                      | Europe & Central Asia      | 10715549   | 493304     | 13212742     |
| Greenland                   | Europe & Central Asia      | 56367      | 119        | 77382        |
| Grenada                     | Latin America & Caribbean  | 112519     | 164        | 70860        |
| Guatemala                   | Latin America & Caribbean  | 16858333   | 368484     | 9152370      |
| Guinea                      | Sub-Saharan Africa         | 13132792   | 25688      | 2364290      |
| Guinea-Bissau               | Sub-Saharan Africa         | 1967998    | 4479       | 307424       |
| Guyana                      | Latin America & Caribbean  | 786559     | 22523      | 648974       |
| Haiti                       | Latin America & Caribbean  | 11402533   | 20077      | 138330       |
| Honduras                    | Latin America & Caribbean  | 9904608    | 297111     | 7584432      |
| Hungary                     | Europe & Central Asia      | 9749763    | 809491     | 12958848     |
| Iceland                     | Europe & Central Asia      | 366425     | 7959       | 581808       |
| India                       | South Asia                 | 1380004385 | 31655824   | 1122889436   |
| Indonesia                   | East Asia & Pacific        | 273523621  | 3409658    | 214445104    |
| Iran                        | Middle East & North Africa | 83992953   | 3871008    | 98181400     |
| Iraq                        | Middle East & North Africa | 40222503   | 1626599    | 9632834      |
| Ireland                     | Europe & Central Asia      | 4994724    | 300976     | 7358188      |
| Israel                      | Middle East & North Africa | 9216900    | 874018     | 16034098     |
| Italy                       | Europe & Central Asia      | 59554023   | 4350028    | 92137032     |
| Jamaica                     | Latin America & Caribbean  | 2961161    | 52895      | 1038132      |
| Japan                       | East Asia & Pacific        | 125836021  | 927058     | 194370766    |
| Jordan                      | Middle East & North Africa | 10203140   | 770712     | 7662370      |
| Kazakhstan                  | Europe & Central Asia      | 18754440   | 633469     | 16344892     |
| Kenya                       | Sub-Saharan Africa         | 53771300   | 203213     | 5997816      |
| Kiribati                    | East Asia & Pacific        | 119446     | 2          | 65278        |

| Country (Entity)                     | Region                                 | Population         | Infections   | Vaccinations         |
|--------------------------------------|----------------------------------------|--------------------|--------------|----------------------|
| Kosovo                               | Europe & Central Asia                  | 1775378            | 108365       | 1594448              |
| Kuwait                               | Middle East & North Africa             | 4270563            | 397831       | 2668082              |
| Kyrgyz Republic                      | Europe & Central Asia                  | 6591600            | 162892       | 1863966              |
| Laos                                 | East Asia & Pacific                    | 7275556            | 6299         | 4402770              |
| Latvia                               | Europe & Central Asia                  | 1901548            | 138863       | 2093452              |
| Lebanon                              | Middle East & North Africa             | 6825442            | 561380       | 3443254              |
| Lesotho                              | Sub-Saharan Africa                     | 2142252            | 12908        | 383340               |
| Liberia                              | Sub-Saharan Africa                     | 5057677            | 5404         | 438562               |
| Libya                                | Middle East & North Africa             | 6871287            | 249114       | 2096600              |
| Liechtenstein                        | Europe & Central Asia                  | 38137              | 3085         | 49388                |
| Lithuania                            | Europe & Central Asia                  | 2794700            | 282818       | 3497154              |
| Luxembourg                           | Europe & Central Asia                  | 632275             | 73870        | 856398               |
| Madagascar                           | Sub-Saharan Africa                     | 27691019           | 42663        | 566264               |
| Malawi                               | Sub-Saharan Africa                     | 19129955           | 52347        | 1304110              |
| Malavsia                             | East Asia & Pacific                    | 32365998           | 1113272      | 50989538             |
| Maldives                             | South Asia                             | 540542             | 77432        | 755588               |
| Mali                                 | Sub-Saharan Africa                     | 20250834           | 14584        | 596434               |
| Malta                                | Middle East & North Africa             | 525285             | 34295        | 906452               |
| Mauritania                           | Sub-Saharan Africa                     | 4649660            | 25691        | 1694010              |
| Mauritius                            | Sub-Saharan Africa                     | 1265740            | 3913         | 1764344              |
| Mexico                               | Latin America & Caribbean              | 128932753          | 2848252      | 129806146            |
| Moldova                              | Europe & Central Asia                  | 2617820            | 259478       | 1567828              |
| Monaco                               | Europe & Central Asia                  | 39244              | 2889         | 49980                |
| Mongolia                             | East Asia & Pacific                    | 3278292            | 164155       | 4402206              |
| Montenegro                           | Europe & Central Asia                  | 621718             | 101927       | 514576               |
| Morocco                              | Middle East & North Africa             | 36910558           | 623528       | 48083924             |
| Mozambique                           | Sub-Saharan Africa                     | 31255435           | 122028       | 7459438              |
| Namihia                              | Sub-Saharan Africa                     | 2540916            | 118922       | 614160               |
| Nenal                                | South Asia                             | 29136808           | 695389       | 16173246             |
| Netherlands                          | Furone & Central Asia                  | 17441139           | 1895343      | 24260870             |
| New Caledonia                        | Fast Asia & Pacific                    | 271960             | 134          | 340002               |
| New Zealand                          | East Asia & Pacific                    | 5084300            | 2874         | 7211962              |
| Nicaragua                            | Latin America & Caribbean              | 6624554            | 9470         | 1674896              |
| Niger                                | Sub-Saharan Africa                     | 24206636           | 5623         | 896106               |
| Nigeria                              | Sub-Saharan Africa                     | 206139587          | 173908       | 8929326              |
| North Macedonia                      | Europe & Central Asia                  | 200152507          | 156380       | 1652784              |
| Norway                               | Europe & Central Asia                  | 5379475            | 137627       | 7991090              |
| Oman                                 | Middle East & North Africa             | 5106622            | 295857       | 5822656              |
| Dakistan                             | South Asia                             | 220802331          | 1034837      | 110035000            |
| Panama                               | Latin America & Caribbean              | /31/768            | 1054657      | 5514728              |
| Tanana<br>Papua New Guinea           | East Asia & Pacific                    | 4314708<br>8047027 | 455055       | 200512               |
| Paraguay                             | Last Asia & Latine                     | 7132530            | 17717        | 5746120              |
| Taraguay<br>Demi                     | Latin America & Caribbean              | 32071846           | 2111303      | 3740120              |
| Philippines                          | East Asia & Pacific                    | 100581085          | 1588065      | 60713004             |
| Paland                               | East Asia & Facilic                    | 27050802           | 1300903      | 20005204             |
| Portugal                             | Europe & Central Asia                  | 10205564           | 2002939      | 16272250             |
| Octor                                | Middle East & North Africa             | 2881060            | 226220       | 10272230             |
| Qatal<br>Domania                     | Furence & Control Asia                 | 10286122           | 1022120      | 12704556             |
| Romanna<br>Dussio                    | Europe & Central Asia                  | 19200125           | 6185240      | 13704330             |
| Russia<br>Rwanda                     | Sub Sabaran Africa                     | 12052200           | 70600        | 114000900<br>6765616 |
| Kwallua<br>Samoa                     | Sub-Sanaran Amea<br>East Asia & Dasifa | 12932209           | 70098        | 0/03010              |
| San Marina                           | East Asia & Facilic                    | 198410             | 5<br>5142    | 21//10               |
| Sali Marino<br>Sao Tomo and Drinsing | Europe & Central Asia                  | 23938              | 5145<br>2454 | 4/302                |
| Sao Tome and Principe                | Sud-Sanaran Africa                     | 219101             | 2454         | 109080               |
| Saudi Arabia                         | Middle East & North Africa             | 3481386/           | 525730       | 46/43/88             |

| Country (Entity)     | Region                     | Population | Infections | Vaccinations |
|----------------------|----------------------------|------------|------------|--------------|
| Senegal              | Sub-Saharan Africa         | 16743930   | 62290      | 1961144      |
| Serbia               | Europe & Central Asia      | 6908224    | 721918     | 7365848      |
| Seychelles           | Sub-Saharan Africa         | 98462      | 18328      | 170530       |
| Sierra Leone         | Sub-Saharan Africa         | 7976985    | 6283       | 744826       |
| Singapore            | East Asia & Pacific        | 5685807    | 64981      | 10094498     |
| Slovakia             | Europe & Central Asia      | 5458827    | 392647     | 4858404      |
| Slovenia             | Europe & Central Asia      | 2100126    | 259215     | 2339018      |
| Solomon Islands      | East Asia & Pacific        | 686878     | 20         | 171562       |
| Somalia              | Sub-Saharan Africa         | 15893219   | 15403      | 691648       |
| South Africa         | Sub-Saharan Africa         | 59308690   | 2447454    | 23950944     |
| South Korea          | East Asia & Pacific        | 51780579   | 199787     | 81394840     |
| South Sudan          | Sub-Saharan Africa         | 11193729   | 11049      | 151244       |
| Spain                | Europe & Central Asia      | 47351567   | 4447044    | 73623626     |
| Sri Lanka            | South Asia                 | 21919000   | 308812     | 29522460     |
| Sudan                | Sub-Saharan Africa         | 43849269   | 37138      | 1659666      |
| Suriname             | Latin America & Caribbean  | 586634     | 25351      | 463792       |
| Sweden               | Europe & Central Asia      | 10353442   | 1100040    | 14898408     |
| Switzerland          | Europe & Central Asia      | 8636896    | 717665     | 11279090     |
| Syrian Arab Republic | Middle East & North Africa | 17500657   | 25963      | 1125146      |
| Tajikistan           | Europe & Central Asia      | 9537642    | 15482      | 4852034      |
| Tanzania             | Sub-Saharan Africa         | 59734213   | 1017       | 1001610      |
| Thailand             | East Asia & Pacific        | 69799978   | 597287     | 83320620     |
| Timor-Leste          | East Asia & Pacific        | 1318442    | 10898      | 969618       |
| Togo                 | Sub-Saharan Africa         | 8278737    | 15798      | 1412904      |
| Trinidad and Tobago  | Latin America & Caribbean  | 1399491    | 38811      | 1259500      |
| Tunisia              | Middle East & North Africa | 11818618   | 589565     | 9858068      |
| Turkey               | Europe & Central Asia      | 84339067   | 5727045    | 118367034    |
| Uganda               | Sub-Saharan Africa         | 45741000   | 93927      | 3898698      |
| Ukraine              | Europe & Central Asia      | 44134693   | 2333409    | 20950876     |
| United Arab Emirates | Middle East & North Africa | 9890400    | 680858     | 21477304     |
| United Kingdom       | Europe & Central Asia      | 67215293   | 5883421    | 109179784    |
| United States        | North America              | 329484123  | 35037721   | 440559612    |
| Uruguay              | Latin America & Caribbean  | 3473727    | 381517     | 6694558      |
| Uzbekistan           | Europe & Central Asia      | 34232050   | 129327     | 29735466     |
| Vanuatu              | East Asia & Pacific        | 307150     | 4          | 114912       |
| Venezuela            | Latin America & Caribbean  | 28435943   | 305766     | 23156914     |
| Vietnam              | East Asia & Pacific        | 97338583   | 150060     | 98930570     |
| Yemen                | Middle East & North Africa | 29825968   | 7061       | 547018       |
| Zambia               | Sub-Saharan Africa         | 18383956   | 195816     | 871880       |
| Zimbabwe             | Sub-Saharan Africa         | 14862927   | 108860     | 6165714      |

Population data in 2020. For countries missing population data in 2020, the latest available data is used instead.
 Cumulative infections till 2021-07-31 according to Johns Hopkins University COVID-19 confirmed cases data.
 Cumulative vaccinations till 2021-11-16 according to Our World in Data COVID-19 vaccine doses administered data.

| Region                              | Population <sup>4</sup> | Number of countries (entities) | Infections <sup>5</sup> | Infection<br>Rate | Vaccines <sup>6</sup> | Vaccines<br>per Capita |
|-------------------------------------|-------------------------|--------------------------------|-------------------------|-------------------|-----------------------|------------------------|
| East Asia & Pacific (EAS)           | 2239251072              | 23                             | 8499968                 | 0.380%            | 3278819028            | 1.46                   |
| Europe & Central Asia (ECS)         | 917117307               | 53                             | 59436989                | 6.48%             | 1076517888            | 1.17                   |
| Latin America &<br>Caribbean (LCN)  | 648152307               | 30                             | 40834286                | 6.30%             | 768626454             | 1.19                   |
| Middle East &<br>North Africa (MEA) | 459750854               | 20                             | 12096249                | 2.63%             | 323960718             | 0.705                  |
| North America (NAC)                 | 367489361               | 2                              | 36476178                | 9.93%             | 500099362             | 1.36                   |
| South Asia (SAS)                    | 1856882402              | 8                              | 35171447                | 1.89%             | 1379697166            | 0.743                  |
| Sub-Saharan Africa (SSF)            | 1132500348              | 47                             | 4772981                 | 0.421%            | 108142914             | 0.0955                 |
| Total                               | 7621143651              | 183                            | 197288098               | 2.59%             | 7435863530            | 0.976                  |

Supplementary Table S2. Detailed information of the 7 divided regions.

Population data is obtained from World Bank Population, total. We calculate the population according to the 2020 data. For countries missing population data in 2020, the latest available data is used instead.
 Cumulative infections till 2021-07-31 according to Johns Hopkins University COVID-19 confirmed cases data.
 Cumulative vaccinations till 2021-11-16 according to Our World in Data COVID-19 vaccine doses administered data.

| Design                           | Income Crown  | #Country | Domulation | Country    | Population |
|----------------------------------|---------------|----------|------------|------------|------------|
| Region                           | Income Group  | #Country | Population | Percentage | Percentage |
|                                  | TT: 1 :       | 1.4      | 222450502  | 07.040     | 0.567      |
|                                  | High income   | 14       | 223450503  | 37.84%     | 9.56%      |
| East Asia & Pacific (EAS)        | Middle income | 22       | 2088041938 | 59.46%     | 89.34%     |
|                                  | Low income    | 1        | 25778815   | 2.70%      | 1.10%      |
| Europe & Central Asia (ECS)      | High income   | 37       | 503240482  | 63.79%     | 54.50%     |
| Europe & Central Asia (ECS)      | Middle income | 21       | 420211696  | 36.21%     | 45.5%      |
| Latin America & Caribbean (LCN)  | High income   | 16       | 28597416   | 39.02%     | 4.58%      |
|                                  | Middle income | 25       | 595242966  | 60.98%     | 95.42%     |
|                                  | High income   | 8        | 68406280   | 38.10%     | 14.73%     |
| Middle East & North Africa (MEA) | Middle income | 11       | 348821218  | 52.38%     | 75.09%     |
|                                  | Low income    | 2        | 47326625   | 9.52%      | 10.19%     |
| North America (NAC)              | High income   | 3        | 367553264  | 100%       | 100%       |
| South Asia (SAS)                 | Middle income | 7        | 1817954061 | 87.50%     | 97.90%     |
| South Asia (SAS)                 | Low income    | 1        | 38928341   | 12.50%     | 2.10%      |
|                                  | High income   | 1        | 98462      | 2.08%      | 0.01%      |
| Sub-Saharan Africa (SSF)         | Middle income | 24       | 582833059  | 50.00%     | 51.30%     |
|                                  | Low income    | 23       | 553115254  | 47.92%     | 48.69%     |

#### Supplementary Table S3. Income level statistics of each region.

<sup>1</sup> Income group data is obtained from World Bank GDP (current US\$).
 <sup>2</sup> Population data is obtained from World Bank Population, total. We calculate the population according to the 2020 data.

| Name                                                 | Description                                                                                                                                                                                           | Value                                  |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Infection rate ( $\beta$ )                           | Probability of getting infected when a<br>susceptible person collocates with an<br>exposed or infected person. We assume the<br>transmission probability is equal for<br>exposed and infected people. | Learnable parameter<br>in three stages |
| Recovery rate $(\gamma)$                             | The rate with which infected individuals                                                                                                                                                              | Learnable parameter                    |
| Recovery face $(\gamma)$                             | recover or die.                                                                                                                                                                                       | in three stages                        |
| Global average death rate ( $\psi$ )                 | The death rate inferred from real-world<br>infection fatality rate (IFR) calculated by<br>John Hopkins statistic on 2022-02-28                                                                        | 1.4%                                   |
| Vaccine effectiveness towards infection ( $\kappa$ ) | The percentage of vaccinated people that will not get infected by COVID-19                                                                                                                            | 85% <sup>15–17</sup>                   |
| Vaccine effectiveness towards death ( $\kappa$ )     | The percentage of infected, vaccinated<br>people that will not die because of<br>COVID-19                                                                                                             | 90% <sup>15–17</sup>                   |

Supplementary Table S4. Epidemiological parameters of our global mobility-aware SIR model.

Supplementary Table S5. Detailed data in calibration of reported cases.

| Region                     | Reported infections | Reported infection rate (%) | Median<br>seroprevalence (%) | Calibration factor |
|----------------------------|---------------------|-----------------------------|------------------------------|--------------------|
| East Asia & Pacific        | 1823286             | 0.082                       | 1.0                          | 12.215             |
| Europe & Central Asia      | 25265184            | 2.885                       | 5.3                          | 1.837              |
| Latin America & Caribbean  | 15447574            | 2.546                       | 6.8                          | 2.671              |
| Middle East & North Africa | 4227264             | 0.980                       | 12.9                         | 13.163             |
| North America              | 20740865            | 5.644                       | 3.8                          | $(1.000)^5$        |
| South Asia                 | 11653046            | 0.628                       | 17.6                         | 28.045             |
| Sub-Saharan Africa         | 1783721             | 0.193                       | 14.6                         | 75.592             |

<sup>5</sup> North America shows higher reported infection rate than median seroprevalence and thus we leave the number of reported infection uncalibrated, i.e., the calibration factor is 1.000.

| Region                     | β       |         |         | γ       |         |         |
|----------------------------|---------|---------|---------|---------|---------|---------|
|                            | Phase 1 | Phase 2 | Phase 3 | Phase 1 | Phase 2 | Phase 3 |
| East Asia & Pacific        | 1.351   | 0.314   | 0.203   | 0.813   | 0.276   | 0.068   |
| Europe & Central Asia      | 1.974   | 0.695   | 0.671   | 0       | 0.536   | 0.624   |
| Latin America & Caribbean  | 1.351   | 0.314   | 0.203   | 0.813   | 0.276   | 0.0684  |
| Middle East & North Africa | 1.732   | 0.536   | 0.478   | 0.746   | 0.519   | 0.357   |
| North America              | 2.010   | 0.255   | 0.226   | 0       | 0.193   | 0.152   |
| South Asia                 | 1.697   | 0.870   | 0.946   | 0.666   | 0.783   | 0.499   |
| Sub-Saharan Africa         | 1.049   | 0.099   | 0.069   | 0.177   | 0.058   | 0.028   |

#### Supplementary Table S6. Calibrated parameters in our model.

#### References

- 1. Johns Hopkins University Center for Systems Science and Engineering. 2019 novel coronavirus COVID-19 (2019-nCoV) data repository by johns hopkins CSSE (2020). https://github.com/CSSEGISandData/COVID-19 (2020).
- 2. World Bank Open Data. https://data.worldbank.org.
- 3. Van Noorden, R. COVID death tolls: scientists acknowledge errors in WHO estimates. Nature 606, 242-244 (2022).
- 4. Perkins, T. A. *et al.* Estimating unobserved SARS-CoV-2 infections in the United States. *Proc. Natl. Acad. Sci.* 117, 22597–22602 (2020).
- **5.** Bobrovitz, N. *et al.* Global seroprevalence of sars-cov-2 antibodies: a systematic review and meta-analysis. *PloS one* **16**, e0252617 (2021).
- 6. Our World in Data. https://ourworldindata.org.
- 7. Gozzi, N. *et al.* Estimating the impact of COVID-19 vaccine inequities: a modeling study. *Nature Communications* 14, 3272 (2023).
- Karaivanov, A., Kim, D., Lu, S. E. & Shigeoka, H. COVID-19 vaccination mandates and vaccine uptake. *Nature Human Behaviour* 6, 1615–1624 (2022).
- 9. Statista. https://www.statista.com.
- **10.** Wu, J. T., Leung, K. & Leung, G. M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. *The Lancet* **395**, 689–697 (2020).
- 11. Zhong, L., Diagne, M., Wang, W. & Gao, J. Country distancing increase reveals the effectiveness of travel restrictions in stopping COVID-19 transmission. *Communications Physics* **4**, 121 (2021).
- 12. Colizza, V., Barrat, A., Barthelemy, M., Valleron, A.-J. & Vespignani, A. Modeling the worldwide spread of pandemic influenza: baseline case and containment interventions. *PLOS Medicine* **4**, e13 (2007).
- **13.** Menkir, T. F. *et al.* Estimating internationally imported cases during the early COVID-19 pandemic. *Nature Communications* **12**, 311 (2021).
- 14. Lemey, P. et al. Untangling introductions and persistence in COVID-19 resurgence in Europe. Nature 595, 713–717 (2021).
- **15.** Nasreen, S. *et al.* Effectiveness of COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe outcomes with variants of concern in ontario. *Nat. Microbiol.* 1–7 (2022).
- **16.** Dagan, N. *et al.* BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. *New Engl. J. Medicine* (2021).
- 17. Chodick, G. *et al.* The effectiveness of the TWO-DOSE BNT162b2 vaccine: analysis of real-world data. *Clin. Infect. Dis.* 74, 472–478 (2022).