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Background Malaria remains one of the deadliest diseases worldwide, especially 
among young children in sub-Saharan Africa. Predictive models are necessary for ef-
fective planning and resource allocation; however, statistical models suffer from as-
sociation pitfalls. In this study, we used empirical dynamic modelling (EDM) to in-
vestigate causal links between climatic factors and intervention coverage with malaria 
for short-term forecasting.

Methods Based on data spanning the period from 2008 to 2022, we used conver-
gent cross-mapping (CCM) to identify suitable lags for climatic drivers and investigate 
their effects, interaction strength, and suitability ranges on malaria incidence. Month-
ly malaria cases were collected at St. Elizabeth Lwak Mission Hospital. Intervention 
coverage and population movement data were obtained from household surveys in 
Asembo, western Kenya. Daytime land surface temperature (LSTD), rainfall, relative 
humidity (RH), wind speed, solar radiation, crop cover, and surface water coverage 
were extracted from remote sensing sources. Short-term forecasting of malaria inci-
dence was performed using state-space reconstruction.

Results We observed causal links between climatic drivers, bed net use, and malar-
ia incidence. LSTD lagged over the previous month; rainfall and RH lagged over the 
previous two months; and wind speed in the current month had the highest predic-
tive skills. Increases in LSTD, wind speed, and bed net use negatively affected in-
cidence, while increases in rainfall and humidity had positive effects. Interaction 
strengths were more pronounced at temperature, rainfall, RH, wind speed, and bed 
net coverage ranges of 30–35°C, 30–120 mm, 67–80%, 0.5–0.7 m/s, and above 90%, 
respectively. Temperature and rainfall exceeding 35°C and 180 mm, respectively, had 
a greater negative effect. We also observed good short-term predictive performance 
using the multivariable forecasting model (Pearson correlation coefficient = 0.85, root 
mean square error = 0.15).

Conclusions Our findings demonstrate the utility of CCM in establishing causal link-
ages between malaria incidence and both climatic and non-climatic drivers. By iden-
tifying these causal links and suitability ranges, we provide valuable information for 
modelling the impact of future climate scenarios.

© 2024 The Author(s)

The substantial decline observed in the global trends of malaria incidence since the year 
2000, largely attributable to the scale-up of malaria control interventions, has been stag-
nating since 2020, with the burden remaining disproportionately high in sub-Saharan  
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Africa [1]. Changes in climatic factors threaten to expand the transmission areas and further reverse the 
gains made in reducing the disease burden, given that environmental and climatic factors, especially rain-
fall, temperature, and humidity, play a significant role in malaria dynamics [2]. The relationship between cli-
matic factors and malaria incidence is context-specific and may vary from one geographical area to the next. 
Previously, we found that an increase in rainfall lagged over two months was associated with an increase in 
malaria incidence, while an increase in temperature lagged over one month was associated with a decrease 
in malaria incidence in western Kenya, with both having equal but opposing effects [3]. Additionally, we 
found that bed net use significantly contributed to the observed decline in malaria incidence in this area [3].

Studies conducted in various regions, including western Kenya [3–6], the Rift Valley in Kenya [7], Sri Lan-
ka [8], and Uganda [9], have found that rainfall, lagged by a certain period, is associated with an increase 
in malaria incidence and mortality. Excess rainfall, on the other hand, was shown to be associated with re-
duced incidence of malaria because it disrupts the mosquito reproduction cycle by flushing mosquito lar-
vae from breeding sites [8,10]. Temperature plays a significant role as well, with some studies reporting a 
decline in malaria incidence [3,6,9] and others reporting an increase [10,11], depending on the geographical 
area. Moreover, the relationship between temperature and mosquito development is seemingly nonlinear, 
whereby extremely low and high temperatures inhibit adult mosquitoes from thriving [12]. Ideal mosquito 
development occurs within a temperature range of 17–34°C [2,13].

Relative humidity, which indicates the amount of moisture in the air given a specific temperature, has also 
been linked to malaria incidence, with varying results [14,15]. A relative humidity of at least 60% enhanc-
es mosquitoes’ ability to bite and infect [15]. In their systematic review [15], Rahmani and colleagues found 
that humidity was a significant driver in 7 out of 14 studies reporting the association between humidity 
and malaria in Southeast Asia. Though most of these studies reported a positive association, one conversely 
reported a negative association, which was attributed to very high humidity levels (83–99%) [15]. In malar-
ia-endemic areas of sub-Saharan Africa, including Kenya, an increase in humidity has been associated with 
an increase in malaria incidence [16].

Although other variables apart from rainfall, temperature, and relative humidity, such as solar radiation, 
wind speed, urbanisation, changes in land use, population movement, and health care access, also influ-
ence changes in malaria incidence at local levels, most modelling studies did not investigate their role in this 
sense [17]. Climate projections, for example, have shown that both rainfall and temperature will increase in 
western Kenya [3]. Due to the balancing but opposing effects of rainfall and temperature, it may be difficult 
to predict future trends in malaria incidence. Additionally, the identification of optimal lags and suitability 
ranges of climatic variables is important for meaningful forecasting. Previous studies have investigated the 
effects of climatic and non-climatic factors on malaria incidence using statistical regression models [3,9,15], 
which limit inference to associations, meaning they do not imply causation [18]. Moreover, due to the non-
linear relationship between climatic factors and malaria incidence, statistical models may not be the best 
choice for investigating causal links to enable accurate forecasting. The inability of statistical models to show 
causal links has often been criticised given the linearity assumption, which makes it difficult to adopt sta-
tistical modelling approaches in the development of early warning systems.

The Granger method, first proposed in the 1960s, is a commonly used method for testing causality [19]. 
While this method has been widely applied to nonlinear time series data in other fields [20–22], it remains 
underutilised in establishing causality between climatic conditions and malaria incidence. Frameworks such 
as empirical dynamic modelling (EDM), and particularly convergent cross-mapping (CCM), were developed 
to overcome limitations of Granger causality, such as the assumptions of stationarity and separability of ef-
fects. These frameworks allow researchers to test the relationships between outcome variables and nonlin-
ear predictors [23,24]. CCM, as a data-driven approach, assumes that variables are causally linked if they 
are part of a coupled dynamical system determined through state space reconstruction [18,23]. Additional-
ly, CCM enables us to establish the directionality of relationships and visualise the transmission suitability 
ranges, which are useful for forecasting.

The only available study employing CCM to investigate the influence of climatic factors on malaria inci-
dence was conducted in Argentina [18]. It examined the influence of temperature and humidity on malar-
ia incidence, but excluded rainfall and other climatic factors. It also did not consider interventions in the 
analysis. Given that the influence of climatic factors varies from one geographic location to another, devel-
oping methods that can be applied to local climatic, non-climatic, and incidence data are crucial for deci-
sion-makers. CCM facilitates this process as it does not require model equations or the assumptions that 
accompany statistical models. With this in mind, we used CCM to investigate the causal links between ma-
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laria incidence and an expanded list of climatic and non-climatic factors, and further applied EDM to make 
short-term forecasts of malaria incidence in western Kenya.

METHODS
Study area

The Kenya Medical Research Institute (KEMRI), in collaboration with the US Centers for Disease Control 
and Prevention (CDC), has been conducting population-based infectious disease surveillance (PBIDS) with-
in the Health and Demographic Surveillance System (HDSS) in western Kenya since 2005. This surveillance 
follows approximately 30 000 people residing in 33 villages within a 5 kilometre radius from St. Elizabeth 
Lwak Mission Hospital (also referred to as Lwak Mission Hospital (LMH)) in a rural setting in Asembo, Siaya 
County. The characteristics of this population have been described previously [3,25,26].

Data sources

Malaria incidence data

Children aged less than five years visiting LMH with symptoms of febrile illness (axillary temperature ≥38°C 
or history of fever within the past 24 hours) were tested for malaria by microscopy between 2008 and 2022. 
All children who tested positive for malaria were treated using artemisinin-based combination therapy (ACT) 
as per the national treatment guidelines. Monthly malaria incidence was estimated by dividing the monthly 
number of new malaria cases by the total monthly person-time of follow-up in years (person-years). Since 
children aged less than six months are protected against malaria through maternal antibodies, they were 
excluded from this analysis [27]. The proportion of the population moving into the HDSS was used as an 
indicator of population movement.

Bed net use data

We utilised household visit data collected biweekly from January 2008 to April 2015 [25] to estimate bed 
net use. The frequency of household visits was reduced to biannual visits thereafter, but the data collection 
instrument remained the same, with data collection occurring throughout the year. During the household 
visits, caretakers were asked if their children slept under bed nets the night preceding the visit. We aggre-
gated data by month and used it to estimate the proportion of individuals reporting bed net use. Bed net 
use was the sole control intervention considered in this analysis due to the universal use of ACT and the 
unavailability of other control interventions such as indoor residual spraying in this area.

Climatic and environmental data

We included daytime land surface temperature (LSTD), rainfall, relative humidity (RH), wind speed, solar 
radiation, crop cover, and surface water coverage. LSTD data with a 1 × 1 km2 spatial and eight-day tem-
poral resolution were extracted from the Moderate Resolution Imaging Spectroradiometer onboard NASA’s 
Terra and Aqua satellites [28]. Downscaled rainfall data were obtained from the Climate Hazards Group 
InfraRED Precipitation with Station data at 1 × 1 km2 spatial and monthly temporal resolutions [29], while 
RH data were calculated from ERA5 data sets [30] using the August-Roche-Magnus formula which uses 2 
m temperature (T), 2 m dew point temperature (TD), coefficient C

a
 equal to 17.625, coefficient C

b
 equal to 

243.05 and K
zero

 equal to 273.15 K (equivalent to 0°C) [31]. Daily wind speed and solar radiation data were 
extracted from ERA-5 Land daily aggregate dataset [30], while land cover and surface water coverage data 
were obtained from Copernicus and the Joint Research Centre (JRC) at 100 × 100 m2 and 30 × 30 m2, respec-
tively [32,33]. Monthly averages of LSTD, rainfall and RH, wind speed, solar radiation, and surface water 
coverage were calculated at their original scales and then averaged within the area to allow linkage to the 
malaria incidence data. Crop cover in the study area did not change during the study period (Figure S1 in 
the Online Supplementary Document), while a time series of health care access – measured using time to 
the nearest health facility could not be generated for inclusion in this type of analysis. These two variables 
were therefore not considered in the analysis.

Statistical analyses

We managed and analysed all data in R, version 4.1.3 (R Core Team, Vienna, Austria). Pearson correlation 
and time series plots were used for descriptive analysis. All EDM analyses were performed using the ‘rEDM’ 
version 1.14.0 package [34]. 
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Convergent cross mapping

The CCM method is used in nonlinear time series analysis, particularly in EDM, to infer causal relation-
ships between variables in a complex system [23]. Developed within the framework of nonlinear state-space 
reconstruction, it aims to determine whether one time series can predict another, offering insights into po-
tential causal links.

The method uses Takens’ theorem [35] to transform an original time series into a higher-dimensional 
space by applying time delay embedding. This technique involves selecting an embedding dimension, 
which determines how many past values of the time series to use for creating a new space, known as 
state-space reconstruction [23]. The key feature of CCM is using the reconstructed state-space of one vari-
able (referred to as a shadow manifold) to predict another, as described by Sugihara et al. [23]. Briefly, if 
variable X (such as climatic factors) can predict a variable Y (such as malaria incidence), it suggests that 
X may have a causal influence on Y. This is assessed by comparing the Euclidean distances between Y’s 
observed values and the predicted values derived from X’s reconstructed state-space. Here, CCM mea-
sures how well the predictions of the two linked variables, X and Y, align by using their shadow mani-
folds. It allows us to use the shadow manifold M

y
 of Y to predict the statesof X in M

x
. The prediction skill 

(ρ) is the correlation coefficient between predicted and observed states of X, and it should improve as the 
length of the time series increases.

Malaria transmission is often seasonal, reflecting the seasonality of climatic factors. It is important to dis-
tinguish the effects of these drivers from their mutual seasonality to clarify causal links. After selecting the 
embedding dimension, which indicates the appropriate time-delay in the effect of a climatic factor on ma-
laria [36], we separated the influence of malaria seasonality from the influence of the climatic factor using a 
surrogate time series for the climatic factor as previously described [18,37]. Briefly, using the observed and 
surrogate time series, we tested the hypothesis of no causal link between malaria and the climatic driver vari-
ables. For each driver variable x(t), a seasonal pattern x

s
(t) was obtained using smoothing splines. Residuals 

were then estimated by subtracting the seasonal cycle values from the observed values, i.e. x
r
(t) = x(t) − x

s
(t). 

These residuals were shuffled and added back to the seasonal pattern to generate a surrogate series x̂(t). 
If x(t) is causally linked to y(t), then y(t) should predict x(t) better than x̂(t), indicating that y(t) is sensitive 
to both the seasonal pattern and the residuals of x(t). To test this hypothesis, we calculated the ρ of 1000 
surrogates and compared the probability distribution of the ρ

s
 to the prediction skill of the original series. 

Statistical significance was considered at α = 0.05. All malaria driver variables were standardised to remove 
measurement bias and allow direct comparison of their effects.

Estimation of interactions’ strength and direction

After establishing causal links and the most suitable lags of the climatic factors, we investigated the strength 
and directionality of their effects on malaria incidence among children under five years of age. For this, we 
used a multivariable state space reconstruction approach which included LSTD, rainfall, RH, wind speed, 
in-migration and bed net use. From the reconstruction, we obtained a coefficient C considered a proxy for 
the interaction strength between each driver and malaria incidence [38]. Assuming that malaria incidence 
y(t) is affected by E different predictor variables x

i
,i = 1,2,… E, the state space at time t is given by x(t) = x

1
(t), 

X
2
(t),… x

E
(t), and a linear model C that predicts the value y(t) from the multivariable reconstructed state-

space vector X(t) is given by the formula

y t C t t x t
j

E

j j( )= ( )+ ( ) ( )
=

∑0

1

C

Where C contains the coefficients C
0
, C

1
,… C

E
 obtained from a singular value decomposition solution as 

described by Ushio and Laneri [18,38].

Forecasting

We assessed the predictive power of individual and combined drivers at forecasted time points of six, three, 
and one year using univariable and multivariable simplex projection [34,39]. We fitted two forecasting mod-
els: one utilising the entire time series (2008–22), and another covering 2008–19 to eliminate potential bias 
related to changes in healthcare-seeking behaviour during the COVID-19 pandemic. For each forecasting 
time point, we utilised a subset of the data as the training set; for example, for the three-year forecasting 
model, we used nine years of data (from 2008–16) to predict the incidence in the following three years (from 
2017–19). We used Pearson correlation, mean absolute error (MAE), and root mean square error (RMSE) to 
compare the observed vs predicted incidences.
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RESULTS
Malaria incidence peaked during May to July every year in this study area (Figure 1), with a second small-
er peak occurring from November to January. The monthly median incidence was 0.46 (interquartile range 
(IQR) = 0.33–0.66) cases per person-year. The median LSTD, rainfall, RH, wind speed, solar radiation, and 
surface water coverage were 32.1°C (IQR = 30.2–34.8°C), 101 mm (IQR = 67–152 mm), 73% (IQR = 69–77%), 
0.6 m/s (IQR = 0.5–0.7 m/s), 18 884 151 J/m2 (IQR = 17 759 044–19 927 002 J/m2), and 0.003% (IQR = 0.000–
0.016%), respectively. All these factors showed clear seasonal patterns. Rainfall peaked from March through 
May, when temperature was observed to be low (Figure 1).

Figure 1. Monthly values. Panel A. Malaria incidence. Panel B. Daytime LST. Panel C. Rainfall. Panel D. Relative humidity. Panel E. 
Wind speed. Panel F. Solar radiation. Panel G. Surface water. Panel C. Bed net use. Panel C. In-migration.

Upon fitting splines, we observed that malaria incidence peaked in both 2009–10 and late 2019 to early 
2020 (Figure 1). Malaria cases steadily declined until 2016, followed by a resurgence. LSTD, in turn, in-
creased between 2012 and 2016, while average RH decreased, and average rainfall steadily increased. There 
was also a slight increase in wind speed, a slight decline in solar radiation and an increase in surface water 
coverage. Bed net use increased, while the proportion of in-migrants declined over time. In-migration was 
seasonal, with the highest levels occurring in December and January.

Causal links

Using Pearson correlation analysis, we observed that LSTD lagged over the previous month (ρ = −0.49), rain-
fall lagged over the previous two months (ρ = 0.42), RH lagged over the two previous months (ρ = 0.59), wind 
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speed in the current month (ρ = −0.31), and solar radiation in the current and previous month (ρ = −0.32) 
had the highest correlations with malaria incidence (Table 1). The causal relationships between these driv-
ers and their lags, with malaria incidence were also confirmed using CCM. Specifically, LSTD lagged over 
the previous month, rainfall lagged over the previous two months, RH lagged over the previous two months, 
and wind speed in the current month exhibited the highest prediction skills (Figure 2).

Table 1. Pearson correlation coefficients between lagged climatic variables and malaria incidence

Variable
Pearson correlation for each lag

Lag 0 Lag 1 Lag 2 Lag 3 Lag 4

ρ P-value ρ P-value ρ P-value ρ P-value ρ P-value

LSTD in °C −0.35 <0.001 −0.49 <0.001 −0.29 <0.001 0.10 0.192 0.28 <0.001

Rainfall in mm −0.18 0.017 0.20 0.008 0.42 <0.001 0.29 <0.001 0.00 0.969

Relative humidity in % 0.13 0.075 0.50 <0.001 0.59 <0.001 0.26 <0.001 −0.10 0.198

Wind in m/s −0.31 <0.001 −0.27 <0.001 0.03 0.716 0.23 0.002 0.04 0.624

Solar radiation in J/m2 −0.32 <0.001 −0.33 <0.001 0.00 0.993 0.12 0.110 −0.07 0.374

Surface water −0.13 0.076 −0.13 0.089 −0.12 0.097 −0.12 0.097 −0.13 0.072

LSTD – daytime land surface temperature

Table 2. Summary of the optimal lags for the causal variables, the direction of their 
effect and their behaviour given different ranges

Predictor Lag in  
months Sign/effect Range of values

LSTD in °C 1 Negative Pronounced between 30–35°C

Rainfall in mm 2 Positive Pronounced between 30–120 mm

Relative humidity in % 2 Positive Pronounced between 67–80%

Wind speed 0 Negative Pronounced between 0.5–0.7 m/s

Proportion of in-migration NA Not clear <1%

Proportion of bed net use NA Negative Pronounced above 95%

LSTD – daytime land surface temperature, NA – not applicable

Figure 2. Causal relationships of daytime LST, rainfall, RH, wind speed, and solar radiations as a function of lags 0, 
1, 2, 3, and 4 as determined by CCM. Boxplots present the distribution of surrogate time series. Asterisks represent 
time-lag values that provided a larger than expected ρ by a common seasonal trend and considered statistically sig-
nificant at α = 0.05 significance level.

Interactions’ strength and directionality

Regarding the interaction strengths and directionality for the key drivers of malaria, we found that LSTD 
lagged over the previous month negatively affected malaria incidence and its interaction strength increased 

with rising temperatures (Table 2, Figure 
3, Panel A). This implies that an increase in 
temperature had a stronger negative effect on 
malaria incidence. The interaction strength 
of LSTD was more pronounced between 
30 − 35°C.

Rainfall lagged over the previous two 
months, had a nonlinear interaction with 
malaria incidence. Overall, rainfall had a 
positive effect on malaria incidence and the 
interaction strength was more pronounced 
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between monthly average rainfall of 30–120 mm (Table 2, Figure 3, Panel B). However, the directionality 
became negative with increased monthly rainfall values, especially after 180 mm.

RH lagged over the previous two months showed a strong positive effect on malaria incidence. The interac-
tion strength increased with higher values of relative humidity and was more pronounced between 67–80% 
(Table 2, Figure 3, Panel C). Wind was negatively associated with incidence, with the interaction being 
more pronounced between 0.5–0.7 m/s (Table 2, Figure 3, Panel D).

There was no clear trend in the association of in-migration with malaria incidence, with the interaction 
being highest at less than 1% in-migration (Table 2, Figure 3, Panel E). Bed net use, meanwhile, had a 
strong negative effect on malaria incidence (Table 2, Figure 3, Panel F), whereby the interaction strength 
increased with a higher proportion of children sleeping under bed nets and was more pronounced when 
coverage was above 95%.

Forecasting

Using the full data set from 2009 to 2022 (Figure 4), we observed poor predictions of malaria incidence 
through the multivariable state space reconstruction, which included rainfall, LSTD, RH, and bed net use. 
The six-year predicted performance had a ρ = 0.18, R2 = 0.04, and RMSE = 0.25; the three-year predicted per-
formance achieved a ρ = 0.21, R2 = 0.04, and a RMSE = 0.21; and the 1-year predicted performance estimated 
a ρ = −0.14, R2 = 0.02, and a RMSE = 0.29 (Table 3).

When utilising the 2008–19 (pre-COVID-19) time series in forecasting (Figure 5), we observed a signif-
icant improvement in predictive ability. The six-year forecasts had a ρ = 0.49, R2 = 0.24, and RMSE = 0.30; 
the three-year forecasts had a ρ = 0.46, R2 = 0.21, and RMSE = 0.24; and the one-year forecast had a ρ = 0.85, 
R2 = 0.73, and RMSE = 0.15 (Table 3).

Though the predictive ability of all the drivers was not clear when the full-time series was used (Figure S2 
in the Online Supplementary Document), we observed good predictive performance for LSTD (ρ = 0.87, 

Figure 3. Interaction strengths for each causal variable over the respective ranges of their values. Panel A. Daytime LST. Panel B. Rain-
fall. Panel C. Relative humidity. Panel D. Wind speed. Panel E. In-migration. Panel F. Bed net use.

Figure 3. 
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R2 = 0.76, RMSE = 0.15) and rainfall (ρ = 0.84, R2 = 0.71, RMSE = 0.16) using the 
pre-COVID-19 data set (Figure S3 in the Online Supplementary Document). 
We also found that malaria incidence from earlier time points was a good pre-
dictor of future incidence (ρ = 0.86, R2 = 0.74, RMSE = 0.20).

DISCUSSION
Using CCM, we observed causal links between LSTD lagged over the previ-
ous month, rainfall and RH lagged over the previous two months; wind speed 
in the current month; and bed net use with malaria incidence among children 
under five years of age. An increase in LSTD, wind speed, and bed net use was 
associated with a decline in malaria incidence. Conversely, an increase in rain-
fall and RH was associated with an increase in malaria incidence. Rainfall ex-
ceeding 180 mm, meanwhile, was negatively associated with malaria incidence. 
CCM effectively captured the nonlinear relationships between climatic drivers 
and malaria incidence.

Our findings demonstrated the effectiveness of EDM in short-term malaria 
incidence forecasting for this area, showing better prediction accuracy for shorter timescales. Further-
more, we elucidated the transmission suitability ranges considering the combined impact of climatic 
drivers, population movement, and bed net use. These findings are essential for both short and long-
term forecasting under different climate scenarios and are useful for developing climate adaptation tools, 
including malaria early warning systems.

Figure 4. Forecasting of malaria incidence using the full data set from 2008 to 2022. Blue lines represent observed in-
cidence, while red lines represent predicted incidence. Panel A. Six years. Panel B. Three years. Panel C. One year.

Table 3. Assessment of forecasting accuracy 
for different lead times using the full  
2008–22 data set and the 2008–19 subset

Analysis period  
and accuracy 
measure

Forecasting period
Six 

years
Three 
years

One 
year

2008–22

Rho (ρ) 0.18 0.21 −0.13

R2 0.03 0.04 0.02

MAE 0.21 0.17 0.22

RMSE 0.25 0.21 0.29

2008–19

Rho (ρ) 0.49 0.46 0.85

R2 0.24 0.21 0.73

MAE 0.26 0.21 0.12

RMSE 0.30 0.24 0.15

MAE – mean absolute error, RMSE – root mean 
square error
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We previously found a significant association between temperature and malaria incidence in the study area 
using statistical models, consistent with findings from other studies [3,4,6,9]. Here we confirmed a similar 
temperature lag over the previous month, as previously established through statistical methods [3], and pro-
vided evidence of a causal link between temperature and malaria incidence. We found that LSTD between 
30–35°C was associated with increased malaria transmission, while there was a greater reduction in malaria 
incidence with LSTD beyond 35°C. Considering that the mean difference between LSTD and air tempera-
ture is approximately 2°C, the findings from this study align with previous studies showing that optimal 
temperature for development of adult mosquitoes was between 28–32°C [2,12,40]. Elsewhere, temperature 
ranges between 17–34°C were associated with increased malaria transmission, indicating the importance 
of considering the geographical context and the study type (either laboratory- or field-based) [13]. With a 
warming climate, and considering that malaria transmission is complex and influenced by multiple factors, 
including land use and topography, transmission may reduce in this area if only temperature is considered. 
However, it may expand to areas currently classified as low transmission areas, particularly the cooler high-
land regions [41–43]. CCM provides researchers with an opportunity to understand context-specific lags 
and suitable temperature ranges, thus allowing for the prediction of future malaria dynamics, better plan-
ning, resource allocation, and targeting of intervention tools.

An increase in rainfall, lagged over the previous two months, was causally linked to an increase in malar-
ia incidence, particularly when rainfall levels were between 30 and 120 mm. However, excessive rainfall 
(above 180 mm) was negatively associated with malaria incidence. These findings align with observations 
from other studies, where malaria transmission peaked at rainfall levels between 80 and 120 mm [6,44]. 
Excessive rainfall can lead to the flushing of mosquito larvae from their habitats, reducing larval numbers 
and disrupting the mosquito reproduction cycle [8,10]. With climate change, certain regions may experience 

Figure 5. Forecasting of malaria incidence using the data set from 2008 to 2019. Blue lines represent observed inci-
dence, while red lines represent predicted incidence. Panel A. Six years. Panel B. Three years. Panel C. One year.
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increased rainfall, potentially triggering epidemic malaria transmission. By identifying the optimal range 
of rainfall for malaria transmission, control programmes can collaborate with meteorological counterparts 
to predict the occurrence and magnitude of malaria incidence, allowing for advanced planning, targeting 
of interventions and resource allocation.

Though most studies only used temperature and rainfall as climatic drivers of malaria dynamics, several 
have considered relative humidity in their analysis. In our study, we included RH as a predictor and estab-
lished causal links between RH and malaria incidence. We observed a steady positive relationship between 
the 67–80% RH range with an optimal lag for humidity being the previous two months. Previous studies 
have associated increased relative humidity with an increase in incidence, highlighting RH levels above 
60% as optimal for mosquitoes to bite and infect [16,45]. However, it is important to note that excessive 
RH, like excessive rainfall, was previously found to be negatively associated with malaria incidence [15]. 
Additionally, we evaluated wind speed, solar radiation, and surface water coverage, and excluded changes 
in land cover since this did not change over time in the relatively small study area. Previous research found 
an increase in wind speed to be negatively associated with malaria incidence; winds alter the abundance 
of malaria vectors, and an increase in wind speed results in a decrease in mosquito biting rates [46–48]. 
Solar radiation and surface water coverage were excluded from further analysis after no significant rela-
tionship was established.

Most EDMs only evaluate climatic drivers. However, we included population movement (in-migration) and 
bed net use in our model to assess their causal links with changes in malaria incidence in this area. Migra-
tion is likely to increase transmission due to the importation of cases [49]. However, we did not find a clear 
association between in-migration and malaria incidence, likely due to the very low number of individuals 
moving into the HDSS area. We did find that bed net use was negatively associated with malaria incidence, 
consistent with previous studies [3,4,50,51]. Bed net coverage greater than 90% was linked with the great-
est reduction in incidence. With climate projections indicating an increase in both temperature and rainfall, 
we believe that, if bed net use is optimised and over 90% of residents are covered, there will be a significant 
reduction in malaria incidence in this area in the coming years. This finding underscores the importance 
of bed net use in malaria control.

The ability of EDM to predict short-term malaria incidence provides an alternative methodology for early 
warning systems that navigate the pitfalls of statistical models, especially with good quality long time series 
data. With good quality data collected during 2008–19, EDM was able to predict malaria incidence well, 
yet it displayed poor predictive ability when the full data set covering the COVID-19 pandemic period was 
used. This may be due to disruptions in healthcare-seeking during the COVID-19 pandemic period, which 
resulted in lower healthcare-seeking post-2019. A recent analysis comparing healthcare-seeking behaviour 
before and during the pandemic reported a 19% decline in the odds of seeking health care at a health fa-
cility due to the COVID-19 pandemic in the study area [52]. Malaria stakeholders, especially the malaria 
control programme and other players like county health departments in Kenya, can employ this straight-
forward method to forecast malaria activity for planning purposes in both endemic and epidemic zones. 
Furthermore, it allows for the inclusion of control intervention coverage, enabling informed decisions about 
coverage thresholds and the estimation of when malaria elimination can be achieved. By using climate and 
control intervention suitability ranges, one can estimate malaria incidence over prolonged periods given 
different climate scenarios, which may help in projecting realistic elimination timelines.

Lastly, CCM, like the frequentist and Bayesian statistical models, can be used for variable selection and 
determining the most appropriate lags for climatic drivers. However, unlike statistical models, which are 
limited to assessing associations only, it allows for the evaluation of causal links between malaria incidence 
and climatic and non-climatic time series drivers. Its main limitation is that it may not be able to distin-
guish between bidirectional causality and strong unidirectional causality that results in synchrony [36]. 
However, this is not a concern for this study, as we assume that the relationship between climatic drivers 
and disease incidence is unidirectional. Another limitation is the consideration of bed net use as the only 
malaria control tool in the study area due to the unavailability of data on other interventions. While this 
study did not account for ACTs, as all cases testing positive for malaria were treated with ACTs, future 
studies with varied coverage in ACT use or other control interventions should consider incorporating the 
coverage of these interventions in their analysis. Lastly, since there were no weather stations in the area, 
we used downscaled and reanalysed climatic data from remote sensing for this analysis, which may not 
be very accurate. Future analyses should validate remotely sensed data against weather stations’ data as 
they become available.
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